Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME

CENTRE NUMBER

MATHEMATICS

0580/21
Paper 2 (Extended)
May/June 2019
1 hour 30 minutes
Candidates answer on the Question Paper.
Additional Materials: Electronic calculator Geometrical instruments Tracing paper (optional)

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.
DO NOT WRITE IN ANY BARCODES.

Answer all questions.
If working is needed for any question it must be shown below that question.
Electronic calculators should be used.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 .
At the end of the examination, fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.
The total of the marks for this paper is 70 .

1 Work out $\$ 1.20$ as a percentage of $\$ 16$.

2 Factorise $5 y-6 p y$.

3 Calculate $\sqrt[3]{8.1^{2}-1.3^{0.8}}$.

4 An equilateral triangle has sides of length 15 cm , correct to the nearest centimetre.
Calculate the upper bound of the perimeter of this triangle.
\qquad

5 The volume of a cuboid is $180 \mathrm{~cm}^{3}$.
The base is a square of side length 6 cm .
Calculate the height of this cuboid.

6 Simplify.
(a) $t^{21} \div t^{7}$
(b) $\left(u^{5}\right)^{5}$

7

The diagram shows a right-angled triangle.

Calculate the value of x.

$$
x=
$$

A, B and C are points on the circle, centre O.
Find the obtuse angle $A O C$.

Angle $A O C=$

9 Write the recurring decimal $0.4 \dot{7}$ as a fraction.
Show all your working.
\qquad

$$
\mathrm{f}(x)=2 x+3
$$

Find $\mathrm{f}(1-x)$ in its simplest form.
1
2
3

4
5

The diagram shows five cards.
Two of the cards are taken at random, without replacement.
Find the probability that both cards show an even number.

12
$27 \quad 28$
29
30
31
32
33

From the list of numbers, write down
(a) a multiple of 7,
\qquad
(b) a cube number,
\qquad
(c) a prime number.

13

$$
x^{2}+4 x-9=(x+a)^{2}+b
$$

Find the value of a and the value of b.

$$
\begin{aligned}
& a= \\
& b=
\end{aligned}
$$

14 Without using a calculator, work out $\frac{5}{6}+\frac{2}{3}$.
You must show all your working and give your answer as a mixed number in its simplest form.

15 Expand and simplify.

$$
(x+1)(x+2)+2 x(x-3)
$$

$16 y$ is inversely proportional to the square root of $(x+1)$.
When $x=8, y=2$.
Find y when $x=99$.

$$
y=
$$

17 (a) Factorise $p^{2}-q^{2}$.
(b) $p^{2}-q^{2}=7$ and $p-q=2$.

Find the value of $p+q$.

18 (a) Simplify $\left(81 y^{16}\right)^{\frac{3}{4}}$.
(b) $2^{3}=4^{p}$

Find the value of p.

$$
\begin{equation*}
p= \tag{1}
\end{equation*}
$$

19 A model of a car has a scale 1:20.
The volume of the actual car is $12 \mathrm{~m}^{3}$.

Find the volume of the model.
Give your answer in cubic centimetres.
\qquad

20 Write as a single fraction in its simplest form.

$$
\frac{1}{x+2}-\frac{2}{3 x-1}
$$

21

NOT TO
SCALE

The diagram shows a pyramid with a square base $A B C D$ of side length 8 cm .
The diagonals of the square, $A C$ and $B D$, intersect at M.
V is vertically above M and $V M=10 \mathrm{~cm}$.
Calculate the angle between $V A$ and the base.

22 (a) These are the first four terms of a sequence.

5	8	11	14

(i) Write down the next term.
(ii) Find an expression, in terms of n, for the nth term.
(b) These are the first five terms of another sequence.

$$
\begin{array}{lllll}
\frac{1}{2} & \frac{3}{4} & \frac{7}{6} & \frac{13}{8} & \frac{21}{10}
\end{array}
$$

Find the next term.
$23 \quad \mathbf{P}=\left(\begin{array}{ll}3 & 1 \\ 2 & 4\end{array}\right)$
(a) Find \mathbf{P}^{2}.
(b) Find \mathbf{P}^{-1}.

The diagram shows information about the final 70 seconds of a car journey.
(a) Find the deceleration of the car between 60 and 70 seconds.
\qquad
(b) Find the distance travelled by the car during the 70 seconds.

NOT TO
SCALE
$O A B C$ is a parallelogram and O is the origin.
$C K=2 K B$ and $A L=L B$.
M is the midpoint of $K L$.
$\overrightarrow{O A}=\mathbf{p}$ and $\overrightarrow{O C}=\mathbf{q}$.
Find, in terms of \mathbf{p} and \mathbf{q}, giving your answer in its simplest form
(a) $\overrightarrow{K L}$,

$$
\overrightarrow{K L}=
$$

(b) the position vector of M.

26 Line L passes through the points $(0,-3)$ and $(6,9)$.
(a) Find the equation of line L.
(b) Find the equation of the line that is perpendicular to line L and passes through the point $(0,2)$.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

